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GDPy stands for Generating Deep Potential with Python, including a set of tools and Python modules to automate
the structure exploration and the model training for machine learning interatomic potentials (MLIPs). It is developed
and maintained by Jiayan Xu under supervision of Prof. P. Hu at Queen’s University Belfast.

INTRODUCTION: 1
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2 INTRODUCTION:



CHAPTER

ONE

SUPPORTED POTENTIALS

eann, deepmd, lasp, nequip / allegro
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4 Chapter 1. Supported Potentials



CHAPTER

TWO

SUPPORTED EXPEDITIONS

molecular dynamics, genetic algorithm, grand canonical monte carlo, graph-theory adsorbate
configuration, artificial force induced reaction

2.1 About

GDPy stands for Generating Deep Potential with Python, including a set of tools and Python modules to automate
the structure exploration and the model training for machine learning interatomic potentials (MLIPs). It is developed
and maintained by Jiayan Xu under supervision of Prof. P. Hu at Queen’s University Belfast.

2.1.1 Features

• A unified interface to various MLIPs.

• Versatile exploration algorithms to construct a general dataset.

• Automation workflows for dataset construction and MLIP training.

5
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2.1.2 Overview

The modules are:

2.2 Installation

2.2.1 Requirements

Must:

• Python 3.9

• matplotlib 3.5.0

• numpy 1.21.2

• scipy 1.7.3

• scikit-learn 1.0.1

• ase 3.22.1

• dscribe 1.2.1

• joblib 1.1.0

• tinydb 4.7.0

• pyyaml 6.0

• networkx 2.6.3

• omegaconf 2.3.0

• h5py 3.7.0

Optional:

• jax 0.2.27

6 Chapter 2. Supported Expeditions
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• pytorch 1.10.1

• sella 2.0.2

• plumed 2.7.3

2.2.2 From Source, Conda or Pip

# Create a python environment

# Install the latest RELEASED version from anaconda
$ conda install gdpx -c conda-forge

# or from pypi
$ pip install gdpx

# Install the latest development version
# 1. download the MAIN branch
$ git clone https://github.com/hsulab/GDPy.git
# or the DEV branch
$ git clone -b dev https://github.com/hsulab/GDPy.git

# 2. Use pip to install the an editable version to
# the current environment
$ cd GDPy
$ pip install -e ./

# 3. Update the source code
$ cd GDPy
$ git fetch
$ git pull

2.3 Getting Started

Here, we would introduce several basic components of GDPy, namely potential, driver, worker. This section demon-
strates how to use gdp to computate a number of structures.

The related commands are

# gdp -h for more info
$ gdp -h

# --- run simulations on local nodes or submitted to job queues
$ gdp -p ./worker.yaml compute ./structures.xyz

# - if -d option is used, results would be written to the folder `./results`
$ gdp -d ./results -p ./worker.yaml compute ./structures.xyz

An example input file (worker.yaml) is organised as follows:

potential:
... # define the backend, the model path and the specific parameters

(continues on next page)
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(continued from previous page)

driver:
... # define the init and the run parameters of a simulation

scheduler:
... # define a scheduler

2.3.1 Units

We use the following units through all input files:

Time fs, Length AA, Energy eV, Force eV/AA.

2.3.2 Potential

We have supported several MLIP formulations based on an AbstractPotentialManager class to access driver,
expedition, and training through workflows.

The example below shows how to define a deepmd potential using the ase backend in a yaml file:

# -- ase interface
potential:

name: deepmd # name of the potential
params: # potential-specifc params

backend: ase # ase or lammps
model: ./graph.pb

See Potentials section for more details.

2.3.3 Driver

After potential is defined, we need to further specify what simulation would be perfomed in the driver section. A
driver (AbstractDriver) is the basic unit with an attacthed ase calculators for basic dynamics tasks, namely,
minimisation, molecular dynamics and transition-state search. Through a driver, we can reuse the input file to perform
the same simulation with several different backends.

The example below shows how to define a driver in a yaml file:

driver:
backend: external # this means using the same backend as the calc
task: md # molecular dynamics (md) or minimisation (min)
init:

md_style: nvt # thermostat NVT
temp: 600 # temperature, Kelvin
timestep: 1.0 # fs

run:
steps: 100

See Driver section for more details.

8 Chapter 2. Supported Expeditions
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2.3.4 Scheduler

With potential and driver defined, we can run simulations on local machines (directly in the command line). However,
simulations, under most circumstances, would be really heavy even by MLIPs (imagine a 10 ns molecular dynamics).
The simulations would ideally be dispatched to high performace clusters (HPCs).

The example below shows how to define a scheduler in a yaml file:

scheduler:
# -- currently, we only have slurm :(
backend: slurm
# -- scheduler script parameters
partition: k2-hipri
ntasks: 1
time: "0:10:00"
# -- environment settings
environs: "conda activate py37\n"

2.3.5 Worker

Worker that combines the above components is what we use throughout various workflows to deal with computations.

The example below shows how to define a worker in a yaml file:

potential:
name: deepmd # name of the potential
backend: ase # ase or lammps
params: # potential-specifc params

model: ./graph.pb
driver:

backend: external
task: md # molecular dynamics (md) or minimisation (min)
init:

md_style: nvt # thermostat NVT
temp: 600 # temperature, Kelvin
timestep: 1.0 # fs

run:
steps: 100

scheduler:
backend: slurm
partition: k2-hipri
ntasks: 1
time: "0:10:00"
environs: "conda activate py37\n"

to run a nvt simulation with given structures by deepmd on a slurm machine

# -- submit jobs...
# one structure for one job
$ gdp -p ./worker.yaml compute ./frames.xyz
nframes: 2
@@@DriverBasedWorker+run
cand100 JOBID: 10206151

(continues on next page)
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(continued from previous page)

cand96 JOBID: 10206152
@@@DriverBasedWorker+inspect
cand100 is running...
cand96 is running...
@@@DriverBasedWorker+inspect
cand100 is running...
cand96 is running...
@@@DriverBasedWorker+retrieve

# -- wait a few minutes...
# if jobs are not finished, run the command would retrieve nothing
$ gdp -p ./worker.yaml worker ./frames.xyz
nframes: 2
@@@DriverBasedWorker+run
@@@DriverBasedWorker+inspect
cand100 is running...
cand96 is running...
@@@DriverBasedWorker+inspect
cand100 is running...
cand96 is running...
@@@DriverBasedWorker+retrieve

# -- retrieve results...
$ gdp -p ./worker.yaml worker ./frames.xyz
nframes: 2
@@@DriverBasedWorker+run
@@@DriverBasedWorker+inspect
cand100 is finished...
cand96 is finished...
@@@DriverBasedWorker+inspect
@@@DriverBasedWorker+retrieve
*** read-results time: 0.0280 ***
new_frames: 2 energy of the first: -92.219757
nframes: 2
statistics of total energies: min -108.5682 max -92.2198 avg -100.3940

Note: If scheduler is not set in the yaml file, the default LocalScheduler would be used. In other words, the
simulations would be directly run in the command line.

10 Chapter 2. Supported Expeditions
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2.4 Potentials

We can define a potential in a unified input file (worker.yaml) for later simulation and training. The MLIP calculations
are performed by ase calculators using either python built-in codes (PyTorch, TensorFlow) or File-IO based external
codes (e.g. lammps).

2.4.1 Formulations

We have already implemented interfaces to the potentials below:

Suported MLIPs:
MLIPs are the major concern.

Name Representation Backend Notes
eann (Recursive) Embedded Atom Python, LAMMPS
lasp Atom-Centred Symmetry Function LASP, LAMMPS
schnet Graph Neueral Network Python
deepmd Deep Descriptor Python, LAMMPS Only potential model.
nequip E(3)-Equivalent Message Passing Python, LAMMPS Allegro is supported as well.
mace Equivalent Graph Neueral Network Python

Note: GDPy does not implement any MLIP but offers a unified interface. Therefore, certain MLIP could not be
utilised before corresponding required packages are installed correctly.

Other Potentials:
Some potentials besides MLIPs are supported. Force fields or semi-empirical potentials are used for pre-sampling to
build an initial dataset. Ab-initio methods are used to label structures with target properties (e.g. total energy, forces,
and stresses).

Name Description Backend Notes
reax Reactive Force Field LAMMPS
xtb Tight Binding xtb
vasp Density Functional Theory VASP
cp2k Density Functional Theory cp2k
plumed Collective-Variable Enhanced Sampling plumed

2.4.2 Simulation

We should define the potential in worker.yaml before running any simulation.

2.4. Potentials 11
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Basic Definition

For most potentials, type_list and model are two required parameters that are used by different backends. If the
lammps backend is used, command must be set to specify how to run lammps. The example below shows how to
define a potential (eann, deepmd, nequip, reax) in a yaml file (worker.yaml):

# -- ase interface
potential:
name: deepmd # name of the potential
params: # potential-specifc params
backend: ase # ase or lammps
type_list: ["H", "O"]
model: ./graph.pb

# -- lammps interface
potential:
name: deepmd
params:
backend: lammps
command: lmp -in in.lammps 2>&1 > lmp.out
type_list: ["H", "O"]
model: ./graph.pb

Note: Allegro can be accessed through the nequip potential but with an extra parameter flavour: allegro in the
params section.

For vasp, the input can be much different as:

potential:
name: vasp
params:
# NOTE: below paths should be absolute/resolved
pp_path: _YOUR-PSEUDOPOTENTIAL-PATH_
vdw_path: _YOUR-VDWKERNEL-PATH_
incar: _YOUR-INCAR-PATH_
# - system depandent
kpts: [1, 1, 1] # kpoints, mesh [1,1,1] or spacing 30 AA^-1
# - run vasp
commad: mpirun -n 32 vasp_std 2>&1 > vasp.out

After setting a driver in the input file (worker.yaml), we can run simulations with the defined potential. See Driver
section for more details.

12 Chapter 2. Supported Expeditions
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Mixing Potentials

Sometimes the simulation requires several potentials, for example, enhanced sampling. A mixer potentical can be
defined to realise this. Currently, it only supports the ase backend. The parameter accepts a list of potential definitions.

The example below uses a deepmd model in tandem with plumed that adds external forces defined in an input file
./plumed.inp.

potential:
name: mixer
params:
backend: ase
potters:
- name: deepmd
params:
backend: ase
type_list: ["H", "O"]
model:
- ./graph.pb

- name: plumed
params:
backend: ase
inp: ./plumed.inp

2.4.3 Training

See Trainer for more details.

2.5 Trainers

2.5.1 Related Commands

# - train a mode in the current directory
$ gdp train ./config.yaml

# - explore configuration space defined by `config.yaml`
# training outputs will be written to the `m0` folder
# a log file will be written to `m0/gdp.out` as well
$ gdp -d m0 train ./config.yaml

2.5.2 Configuration File

The config.yaml requires two sections dataset and trainer to define a training process as

dataset:
name: xyz
dataset_path: ./dataset
train_ratio: 0.9
batchsize: 16

(continues on next page)
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(continued from previous page)

random_seed: 1112
trainer:
name: deepmd
command: dp
freeze_command: dp
config: ./dpconfig.json
type_list: ["H", "O"]
train_epochs: 100
random_seed: 1112

In the dataset section, a dataset is defined. gdp will load the structures in the dataset and convert to the proper format
required by the trainer.

• name: Dataset format. (Only xyz is supported now.)

• dataset_path: Dataset filepath.

• train_ratio: Train-valid-split ratio.

• batchsize: Training batchsize.

• random_seed: Random seed that affects how to split structures into train and test sets.

A typical xyz dataset looks like

$ tree ./dataset
./dataset/

water-H128O64
init_aimd.xyz
iter_dpmd.xyz

In the trainer section, a trainer is defined. The parameters related to the model architecture is defined in config, which
may be different by models. gdp will automatically update some parameters in the config, which include the training
dataset section and training epochs.

For example, if one is training deepmd, training.training_data and training.validation_data in the ./dpconfig.json can be
left empty. gdp will convert dataset into deepmd-format and update the file path. Moreover, deepmd uses numb_steps
instead of epochs. gdp will compute the number of batches based on the input dataset and multiply it with train_epochs
to give the value of numb_steps.

• name: Trainer target.

• commad: Command to train.

• freeze_command: Command to freeze/deploy the trained model.

• config: Model architecture configuration.

• type_list: Type list of the model.

• train_epochs: Number of training epochs.

• random_seed: Random number generator to generate random numbers in the training.

14 Chapter 2. Supported Expeditions



GDPy (gdpx), Release 0.0.2

2.5.3 List of Trainers

Read notes for the training of a specific MLIP formulation.

deepmd

Warning: This trainer requires an extra package dpdata. Use conda install dpdata -c deepmodeling to install it.

gdp converts structures into the deepmd format stored in two folders train and valid based on dataset and writes a
training configuration deepmd.json. The training will be performed by dp train deepmd.json.

Some parameters in the deepmd.json will be filled automatically by gdp. training.training_data and train-
ing.validation_data will be the folder paths generated by gdp. Moreover, deepmd uses numb_steps instead of epochs.
gdp will compute the number of batches based on the input dataset and multiply it with train_epochs to give the value
of numb_steps.

See DEEPMD doc for more info about configuration parameters. Example Configuration:

dataset:
name: xyz
dataset_path: ./dataset
train_ratio: 0.9
batchsize: 16
random_seed: 1112

trainer:
name: deepmd
config: ./dpconfig.json
type_list: ["H", "O"]
train_epochs: 10
random_seed: 1112

init_model: ../model.ckpt

Note: Deepmd Trainer in gdp supports a init_model keyword that allows one to initialise model parameters from a
previous checkpoint. This is useful when training models iteratively in an active learning loop.

mace

gdp writes ./_train.xyz and ./_test.xyz into the training directory based on dataset and generates a command line based
on trainer.

Notice some parameters are override by gdp based on the dataset and the trainer parameters. The trainer.config section
will be converted to a command line as python ./run_train.py –name=’MACE_model’ . . . , which is the current training
command supported by MACE.

• seed: Override by trainer.seed

• max_num_epochs: Override by trainer.train_epochs.

• batch_size: Override by dataset.

• train_file: Override as ./_train.xyz

• valid_file: Override as ./_test.xyz

2.5. Trainers 15
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• valid_fraction: Always 0.

• device: Automatically detected (either cpu or cuda). No Apple Silicon!

• config_type_weights: Must be a string instead of a dictionary.

Note: Train set are data used to optimise model parameters. Validation set are data that helps us monitor the training
progress and decide to save the model at which epoch. Test set are data that neither are trained nor affect our decision
on the model. Some training simplifies these complex concepts and just use one test set for both the validation and the
test purposes.

See MACE doc for more info about configuration parameters. Example Configuration:

dataset:
name: xyz
dataset_path: ./dataset
train_ratio: 0.9
batchsize: 16
random_seed: 1112

trainer:
name: mace
command: python ./run_train.py
config: # This section can be put into a separate file e.g. `./config.yaml`
name: MACE_model
valid_fraction: 0.05
config_type_weights: '{"Default": 1.0}'
E0s: {1: -12.6261, 8: -428.5812}
model: MACE
default_dtype: float32
hidden_irreps: "128x0e + 128x1o"
r_max: 4.0
swa: true
start_swa: 10
ema: true
ema_decay: 0.99
amsgrad: true
restart_latest: true

type_list: ["H", "O"]
train_epochs: 10
random_seed: 1112

Warning: If one uses swa, gdp will not check if start_swa is smaller than max_num_epochs. If start_swa is larger
than max_num_epochs, there will be an error when saving the model.

16 Chapter 2. Supported Expeditions
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2.5.4 Use Scheduler

If the training is too time-consuming, one can use gdp session to access a workflow that defines a training operation.
See instructions in the Session section.

2.6 Computations

This section gives more details how to run basic simulations with different potentials using a unified input file, which
is generally made up of three components. We need to define what potential to use in the potential section, what
simulation to run in the driver section, and finally what scheduler to delegate if necessary. See Worker_Examples in
the GDPy repository for prepared input files.

The related commands are

# gdp -h for more info
$ gdp -h

# --- run simulations on local nodes or submitted to job queues
$ gdp -p ./worker.yaml compute ./structures.xyz

# - if -d option is used, results would be written to the folder `./results`
$ gdp -d ./results -p ./worker.yaml compute ./structures.xyz

An example input file (worker.yaml) is organised as follows:

potential:
... # define the backend, the model path and the specific parameters

driver:
... # define the init and the run parameters of a simulation

scheduler:
... # define a scheduler

2.6.1 Potential

Potential is the engine to drive any simulation. See Potentials section for more details on how to define a potential.

2.6.2 Driver

The driver supports minisation, molecular dynamics, and transition state search. For the driver section, backend,
task, init, and run should be specified for each simulation. If an external backend is used, the minimisation would use
the same backend defined in the potential section if it is valid.

An example input file (worker.yaml) is

driver:
backend: external # options are external, ase, lammps, and lasp
task: min # options are min, md, and ts
init:

... # initialisation parameters
run:

... # running parameters

2.6. Computations 17
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Constraints

Constraints are of great help when simulating some systems, for instance, surfaces. There are two ways to fix atoms in
structures. The constraints could be either stored in the structure file (e.g. move_mask of xyz and FractionalXYZ of
xsd) or specified in run: constraints. If the latter one is used, the file-attached constraints would be overridden.

Constraints can be specified as:

# 1. similiar to lammps group definition by atom ids
run:

# fix atoms with indices 1,2,3,4, 6,7,8, starting from 1
constraints: "1:4 6:8"

# 2. useful for surface systems
run:

# fix 8 atoms with the smallest z-coordinates
# NOTE: this does not consider PBC...
constraints: "lowest 8"

Minimisation

To drive a minisation, the minimal parameetrs are steps and fmax. Specific minisation algorithm can be defined in init:
min_style: . . . . The default min_style is BFGS for the ase backend while fire for the lammps backend.

driver:
backend: external
task: min
init:

min_style: bfgs
run:

steps: 200 # number of steps
fmax: 0.05 # unit eV/AA, convergence criteria for atomic forces

Molecular Dynamics

To driver a molecular dynamics, thermostat and related parameters need to set in init: . . . . Three thermostats are
supported both by ase and lammps, which are nve, nvt and npt.

driver:
backend: external
task: md
init:

# 1. NVE
md_style: nve # options are nve, nvt, and npt
timestep: 2.0 # fs, verlet integration timestep
# 2. NVT
#md_style: nvt # options are nve, nvt, and npt
#timestep: 2.0 # fs, verlet integration timestep
#temp: 300 # Kelvin, temperature
#Tdamp: 100 # fs, temperature control frequency
# 3. NPT
#md_style: nvt # options are nve, nvt, and npt

(continues on next page)
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(continued from previous page)

#timestep: 2.0 # fs, verlet integration timestep
#temp: 300 # Kelvin, temperature
#Tdamp: 100 # fs, Heatbath frequency
#pres: 1.0 # atm, equilibrium pressure
#Pdamp: 100 # fs, pressure control frequency

run:
steps: 200 # number of steps

Transition-State Search

We are working on the interface to methods of Sella using the ase backend and NEB using the lammps backend.

2.6.3 Worker

If the scheduler section is defined in the input file (worker.yaml), a worker would be created to delegate simulations to
the queue. Instead of using server database, we implement a light-weight file-based database using TinyDB to manage
jobs.

Currently, we only support the slurm scheduler. The definition is

scheduler:
backend: slurm
...
# SLURM-PARAMETERS
ntasks: ...
time: ...
...
environs: "conda activte py37" # working environment setting

An additional keyword batchsize can be set in the input file as

batchsize: 3
potential:

...
driver:

...
scheduler:

...

which would split the input structures into groups that run as separate jobs. For example, two jobs would be submitted
if we set a batchsize of 3 and have 5 input structures. The first job would have 3 structures and the second one would
have 2 structures. The default batchsize is 1 that one structure would occupy one job.

2.6. Computations 19
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2.7 Builders

Builders are several classes that generate structures. They can be defined in two categories as Builder and Modifier.

2.7.1 Related Commands

# - build structures based on `config.yaml`
# results would be written to the `results` directory
$ gdp -d ./results build ./config.yaml

# - build structures based on `config.yaml`
# some builders (modifiers) require substrates as input
# it can be set in `config.yaml` directly or as a command argument
$ gdp -d ./results build ./config.yaml --substrates ./sub.xyz

# - build 10 structures based on `config.yaml`
# `number` can be used for some random-based builders (modifiers)
# otherwise, only **1** structure is randomly built.
$ gdp -d ./results build ./config.yaml --substrates ./sub.xyz --number 10

2.7.2 List of Builders

DimerBuilder

RandomBuilders

This section is about builders that generate random structures under certain geometric restraints.

The builder parameters:

• composition:

A dictionary of the chemical composition to insert. This can be atoms, molecules, or a mixture of
them. For example, only atoms as {“Cu”: 13}, only molecules as {“H2O”: 3} and mixed atoms and
molecules {“Cu”: 13, “H2O”: 3}. Moreover, if the exact number of molecules is unknwon, it can
be automatically determined by the density as {“H2O”: “density 0.998”} with the unit of g/cm^3.

• region:

Define the region where random atoms/molecules are put. See Regions for more details.

• covalent_ratio:

The geometric restraints. The minimum and maximum multipliers for the covalent distance between
atoms.

• random_seed:

Random seed for the random generator. Use the same seed to reproduce results.

Note: Sometimes the builder will fail to generate new structures due to geometric restraints. Simply reduce the
first element of covalent_ratio that allows structures with very close atomic distances. If this still does not work, set
test_too_far to false, which allows sparse atomic positions to generate.
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The YAML input file has the format of

Cluster

Use cell to define the box where the generated cluster is in even though it is not periodic. Here, a smaller region is set
to put random atoms, which makes atoms more concentrated.

# - Genreate a cluster with 13 Cu and 3 H2O.
method: random_cluster
composition:
Cu: 13
H2O: 3

cell: [30., 0., 0., 0., 30., 0., 0., 0., 30.]
region:
method: lattice
origin: [10., 10., 10.,]
cell: [10., 0., 0., 0., 10., 0., 0., 0., 10.]

covalent_ratio: [0.6, 2.0]
test_too_far: false
random_seed: 1112

Surface

Generate random atoms on a substrate. This is useful to explore reconstructed (amorphous) surfaces or supported
nanoparticles. The region defines the lattice vector in the x-axis and the y-axis but a cut in z-axis that has a range from
7.5 to 13.5 (7.5+6.0).

# - Genreate a surface with 8 Cu and 3 O.
method: random_surface
substrate: ./assets/slab.xyz
composition:
Cu: 8
O: 3

region:
method: surface_lattice
origin: [0., 0., 7.5]
cell: [5.85, 0.0, 0.0, 0.0, 4.40, 0.0, 0.0, 0.0, 6.0]

covalent_ratio: [0.4, 2.0]
test_dist_to_slab: false
test_too_far: false
random_seed: 1112
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Bulk

Bulks have random lattice parameters. Use cell_bounds to set the range of angles and lengths.

# - Genreate a bulk with 4 Cu and 2 O.
method: random_bulk
composition:
Cu: 4
O: 2

cell_bounds:
phi: [35, 145]
chi: [35, 145]
psi: [35, 145]
a: [3, 50]
b: [3, 50]
c: [3, 50]

Graph

insert

# config.yaml
method: graph_insert
species: CO
spectators: [C, O]
sites:

- cn: 1
group:

- "symbol Cu"
- "region cube 0. 0. 0. -100. -100. 6. 100. 100. 8."

radius: 3
ads:

mode: "atop"
distance: 2.0

- cn: 2
group:

- "symbol Cu"
- "region cube 0. 0. 0. -100. -100. 6. 100. 100. 8."

radius: 3
ads:

mode: "atop"
distance: 2.0

- cn: 3
group:

- "symbol Cu"
- "region cube 0. 0. 0. -100. -100. 6. 100. 100. 8."

radius: 3
ads:

mode: "atop"
distance: 2.0

graph:
(continues on next page)
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pbc_grid: [2, 2, 0]
graph_radius: 2
neigh_params:

covalent_ratio: 1.1
skin: 0.25

remove

# config.yaml
method: graph_remove
species: O
graph:

pbc_grid: [2, 2, 0]
graph_radius: 2
neigh_params:

covalent_ratio: 1.1
skin: 0.25

spectators: [O]
target_group:

- "symbol O"
- "region surface_lattice 0.0 0.0 8.0 9.8431 0.0 0.0 0.0 10.5534 0.0 0.0 0.0 8.0"

exchange

# config.yaml
method: graph_exchange
species: Zn
target: Cr
graph:

pbc_grid: [2, 2, 0]
graph_radius: 2
neigh_params:

# AssertionError: Single atoms group into one adsorbate.
# Try reducing the covalent radii. if it sets 1.1.
covalent_ratio: 1.0
skin: 0.25

spectators: [Zn, Cr]
target_group:

- "symbol Zn Cr"
- "region surface_lattice 0.0 0.0 8.0 9.8431 0.0 0.0 0.0 10.5534 0.0 0.0 0.0 8.0"
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2.7.3 Related Components

Regions

A region is a space defined in the Cartesian coordinate system, which help operators access and modify atoms in a
much easier way. See its application in Monte Carlo (MC).

Define a region in the yaml input file as follows (units: Ang):

• auto.

This region takes the simulation box of the input atoms.

region:
method: auto

• cube.

# Create a cube as ox+xl <= x <= ox+xh, oy+yl <= y <= oy+yh, oz+zl <= z <= oz+zh
region:
method: cube
origin: [50, 50, 50] # ox, oy, oz
boundary: [0, 0, 0, 10, 10, 10] # xl, yl, zl, xh, yh, zh

The figure shows a cubic region in a (10x10x10) simulation box. The origin is (2,2,2) and the boundary is [0,0,0,2,2,2].

• sphere.

# Create a sphere centre at [50, 50, 50] with the radius 50.
region:
method: sphere
origin: [50, 50, 50]
radius: 50

The figure shows a spherical region in a (10x10x10) simulation box. The origin is (5,5,5) and the radius is 2.
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• cylinder.

# Create a vertical cylinder.
region:
method: cylinder
origin: [50, 50, 50]
radius: 50
height: 20

The figure shows a vertical cylinderal region in a (10x10x10) simulation box. The origin is (5,5,2), the radius is 2, and
the height is 6.

• lattice.
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# Create a periodic cubic lattice that is centred at [50, 50, 50].
region:
method: lattice
origin: [0, 0, 2]
cell: [10, 0, 0, 0, 10, 0, 0, 0, 1]

The figure shows a lattice region in a (10x10x10) simulation box. The origin is (0,0,2) and the cell is
[10,0,0,0,10,0,0,0,1]. The surface thickness is 1 and atoms with z-coordinate within [2, 3) will be considered as in
the region. Periodic boundary condition is used for this region.

• surface_lattice

This has the same definition as lattice. However, periodic boundary condition is only applied in x- and y-axis. This is
useful when only considering surface atoms.

2.8 Selections

This section gives more details how to run basic selections with different selectors using a unified input file.

The related commands are

# gdp -h for more info
$ gdp -h

# - results would be written to current directory
$ gdp select ./selection.yaml -s structures.xyz

# - if -d option is used, results would be written to it
$ gdp -d results select ./selection.yaml -s structures.xyz

# - accelerate the selection using 8 parallel processes,
# which is useful for descriptor-based selection as it requires

(continues on next page)
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# massive computations
$ gdp -nj 8 -d results select ./selection.yaml -s structures.xyz

The selection configuration (./selection.yaml) is organised as

selection:
- method: property
... # define property and sparsification
number: [512, 0.5]

- method: descriptor
... # define descriptor and sparsification
number: [128, 1.0]

This selection defines a sequential produces that consists of two selectors. Input structures will be first selected based
on the property and the selected structures will be further selected based on the descriptor.

For the most selections, a parameter number is required as it determines the number of selected structures. The first
value is a fixed number and the second value is a percentage. If the input dataset have 500 structures, with number:
[512, 0.5], 250 structures will be selected (500*0.5=250 as 500 < 512). Then, with number: [128, 1.0], 128 structures
will be selected (250 > 128).

After a successful selection, there are several output files. The selected_frames.xyz contains the final structures. Output
files start with a number that indicates their oder in the list of selections. Some files, which end with -info, stores basic
information of selected structures. For example,

# index confid step natoms ene aene maxfrc ␣
→˓score

0 -1 0 43 -196.7322 -4.5752 16.1094 ␣
→˓0.0994

1 -1 100 43 -242.8428 -5.6475 48.5978 ␣
→˓0.0203

87 -1 8700 43 -271.3238 -6.3099 30.7878 ␣
→˓0.0164

88 -1 8800 43 -271.2264 -6.3076 47.6111 ␣
→˓0.0175

89 -1 8900 43 -284.6631 -6.6201 64.4184 ␣
→˓0.0143

90 -1 9000 43 -303.0153 -7.0469 60.4111 ␣
→˓0.0147

91 -1 9100 43 -311.1232 -7.2354 66.2150 ␣
→˓0.0120

92 -1 9200 43 -309.4916 -7.1975 60.4200 ␣
→˓0.0091

93 -1 9300 43 -312.9583 -7.2781 149.9330 ␣
→˓0.0097

94 -1 9400 43 -314.2778 -7.3088 29.8337 ␣
→˓0.0089

95 -1 9500 43 -315.8645 -7.3457 34.8396 ␣
→˓0.0114

96 -1 9600 43 -310.2994 -7.2163 24.1396 ␣
→˓0.0073

97 -1 9700 43 -313.9329 -7.3008 29.1520 ␣
→˓0.0062

(continues on next page)
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98 -1 9800 43 -327.4579 -7.6153 14.7447 ␣
→˓0.0074

99 -1 9900 43 -330.4879 -7.6858 20.1336 ␣
→˓0.0083

100 -1 10000 43 -329.5945 -7.6650 34.6097 ␣
→˓0.0055
# random_seed None

The first columns are structure identifiers that come from explorations, for instance, the candidate ID (confid) and the
dynamics step (step) in MD or minimisation. Other notations are natoms - number of atoms, ene - total energy, aene -
average atomic energy (ene/natoms), maxfrc - maximum atomic force, score - selection score whose meaning depends
on the sparsification method. Units are in eV nad eV/Ang.

There have some other output files by specific selection method. Find details in the following subsections.

Warning: When run the same selection again, gdp will read the cached results (-info.txt files). However, it will not
check whether the input structures are different from the last time. Remove output files before selection if necessary.

2.8.1 List of Selectors

Descriptor

Select structures based on descriptors.

Two sparsification methods are supported.

• cur:

Run CUR decomposition to select the most representative structures. This method computes a CUR
score for every structure and strategy defines the selection either performs a deterministic selection
(descent), structures with the number largest scores, or a random one (stochastic), structures with
higher scores that have higher probability. If zeta is larger than 0., the input descripters will be trans-
formed as MATMUL(descriptors.T, descriptors)^zeta.

• fps:

The farthest point sampling strategy. min_distance can be set to adjust the sparsity of selected struc-
tures in the feature (descriptor) space.

selection:
- method: descriptor
descriptor:

name: soap
species: ["H", "O", "Pt"]
rcut : 6.0
nmax : 12
lmax : 8
sigma : 0.3
average : inner
periodic : true

sparsify:
method: cur # fps
zeta: -1

(continues on next page)

28 Chapter 2. Supported Expeditions



GDPy (gdpx), Release 0.0.2

(continued from previous page)

strategy: descent
number: [16, 1.0]

This selection will produce a picture to visualise the distribution of structures.

Note: This requires the python package dscribe to be installed. Use pip install or conda install dscribe -c conda-forge.

2.8.2 Property

Select structures based on properties. The property can be total energy, atomic forces, or any properties that can
be stored in the ase atoms.info. The example below demonstrates that the selection based on max_devi_f that is the
maximum deviation of force prediction by a committee of MLIPs.

After chosing the property, there are several sparsification methods to select structures.

• filter:

Select structures that have property within range. All valid structures will be selected, which is not
affected by the parameter number.

• sort:

Sort structures by property and select the first number of them. Set reverse: True if structures with
larger property values are of interest.

• hist:

Randomly select number structures based on probabilities by the histogram. For example, if 10 struc-
tures will be selected, dataset has 100 structures in bin 1 and 25 in bin 2, then roughly 8 will be from
bin 1 and 2 from bin 2.

• boltz:
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Randomly select number structures based on probabilities by the Boltzmann distribution. This is
useful when selecting structures based on energy-related properties. The probabilty is computed as
exp(-p/kBT) where p is the property value and kBT is the custom parameter in eV.

selection:
- method: property
properties:
max_devi_f:
range: [0.05, null]
nbins: 20
sparsify: filter

- method: property
properties:
max_devi_f:
range: [0.05, 0.25]
nbins: 20
sparsify: hist

number: [256, 1.0]

The first selection on property max_devi_f with filter will give an output file below

#Property max_devi_f
# min 0.0304 max 17.9258
# avg 0.7199 std 0.4960
# histogram of 4914 points in the range (npoints: 5005)

0.0500 3344
0.9438 1547
1.8376 11
2.7314 2
3.6252 4
4.5189 3
5.4127 1
6.3065 0
7.2003 0
8.0941 0
8.9879 0
9.8817 0
10.7755 0
11.6693 0
12.5631 0
13.4568 1
14.3506 0
15.2444 0
16.1382 0
17.0320 1

There 4914 structure from 5005 have max_devi_f within [0.05,inf]. The rest 91 structures have a max_devi_f smaller
than 0.05.
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2.8.3 Graph

. . .

2.9 Expeditions

This section demonstrates several advanced methods to explore the configuration space, which are made up of basic
computations. In general, an expedition is made up of three components, namely, builder, worker, and some specific
parameters.

Also, an expedition progresses iteratively. The figure below demonstrates how we decouple the working ingrediants
and manage the communication between the expedition and the job queue (e.g. SLURM) if minimisations were not
directly performed in the command line.

In every iteration, the expedition will build several new structures (either from the scratch or based on previously
explored structures), and then evolves these structures into more physically reasonable ones by minimisation or molec-
ular dynamics. This procedure produces a large number of trajectories. Applying some selections, we can extract local
minima of interest and some structures from trajectories, which help the MLIP learns a comprehensive configuration
space.

2.9.1 Related Commands

# - explore configuration space defined by `config.yaml`
# results will be written to the `results` folder
# a log file will be written to `results/gdp.out` as well
$ gdp -d exp explore ./config.yaml

# - or use the below command if there is `worker` section defined in `config.yaml`
$ gdp -d exp -p worker.yaml explore ./config.yaml

The config.yaml defines the specific expedition. See the page of each documentation for more information.

The worker.yaml defines the potential and the minimisation used through the expedition. (See Computations for more
details.) For example, the below configuration indicates a minisation by deepmd using both lammps backends. Note
set ignore_convergence to true will ignore the convergence check of the minimisation. Since the structures from the
first few iterations are far away from minima i.e. they have very high potential energies, there is no need to minimise
them to the full convergence. In most cases, 400 steps is more than enough. This setting help us reduce computation
costs.

Besides, a slurm scheduler is set with a batchsize of 5. When the expedition comes across any minimisation, it will
automatically submit jobs to the queue and each job will contain 5 structures as a group. When run the gdp . . . explore
. . . command again, the expedition will try to retrieve the minimisation results if they are finished, and continues to
run the rest procedure.

If no scheduler is set, all minimisation will run in the command line. Therefore, it is practical to write a job script with
the gdp . . . explore . . . command and submit it to the queue if a large number of structures are to explore.

batchsize: 5
driver:
backend: lammps
ignore_convergence: true

(continues on next page)
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task: min
run:
fmax: 0.05 # eV/Ang
steps: 400
constraint: lowest 120

potential:
name: deepmd
params:
backend: lammps
command: lmp -in in.lammps 2>&1 > lmp.out
type_list: [Al, Cu, O]
model:
- ./graph-0.pb
- ./graph-1.pb
- ./graph-2.pb
- ./graph-3.pb

scheduler:
backend: slurm
ntasks: 1
cpus-per-task: 4
time: "00:10:00"
environs: "conda activate deepmd\n"

2.9.2 List of Expeditions

Monte Carlo (MC)

Overview

MC is a conventional method to explore the configuration space.

Example

The related commands are

# - explore configuration space defined by `config.yaml`
# results will be written to the `results` folder
# a log file will be written to `results/gdp.out` as well
$ gdp -d exp -p worker.yaml explore ./config.yaml

# - after MC is converged i.e. reaches the maximum number of steps,
# the MC trajectory is stored at `results/mc.xyz`

In the operators section,

Every MC operator has parameters of temperature, pressure, and region. In general, these three parameters should be
consistent among different operators used in the simulation. Otherwise, the simulation may not converge the structure
to the phyiscal equilibrium.

To increase the acceptance, convalent_ratio is often set to check if the new structure has too small or too large distances.
The two values are the minimum and the maximum coefficients, which will be multipied by the covalent bond distance.
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See Regions for more information about defining a region.

• move:

Move a particle to a random position with maximum max_disp displacement.

• swap:

Swap the positions of two particles from two different types.

• exchange:

Exchange particles with an imaginary reservoir by inserting or removing. This changes the number
of atoms in the system as it samples the grand canonical ensemble.

Note: In general, operators should have the same region. Otherwise, the simulation is not converged to an equilibrium.

In the convergence section,

• steps: Number of MC steps.

Since MC usually takes ~5000 steps, the dump_period determines what MC step will be saved. For example, if
dump_period = 2, step 0, 2, 4 . . . will be saved. These saved structures and trajectories can be used for MLIP training.

The input file shown below explores the oxidation of Cu(111) surface. The MC operators only apply to atoms in the
surface region including Cu and O.

method: monte_carlo
random_seed: 1112
builder:
method: reader
fname: ./fcc-s111p44.xyz

operators:
- method: exchange
region:
method: lattice
origin: [0, 0, 8.0]
cell: [10.17, 0, 0, 0, 8.81, 0, 0, 0, 6.0]

covalent_ratio: [0.8, 2.0]
reservoir:
mu: -5.75
species: O

temperature: 800
prob: 0.5

- method: move
particles: [Cu, O]
region:
method: lattice
origin: [0, 0, 8.0]
cell: [10.17, 0, 0, 0, 8.81, 0, 0, 0, 6.0]

covalent_ratio: [0.8, 2.0]
max_disp: 2.0
temperature: 800
prob: 0.5

convergence:
steps: 5

dump_period: 1
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For the worker.yaml, the parameter `use_single` must be true as

use_single: true
potential:
name: deepmd
params:
backend: lammps
command: lmp -in in.lammps 2>&1 > lmp.out
type_list: [Cu, O]
model:
- ./graph.pb

driver:
backend: lammps
task: min
ignore_convergence: false
run:
fmax: 0.05
steps: 400

Application

1. Xu, J.; Xie, W.; Han, Y.; Hu, P. Atomistic Insights into the Oxidation of Flat and Stepped Platinum Surfaces
Using Large-Scale Machine Learning Potential-Based Grand-Canonical Monte Carlo. ACS Catal. 2022, 12,
14812-14824.

Genetic Algorithm (GA)

Overview

Genetic algorithm is a popular global optimisation method to find stable structures. GA in gdpy makes use of func-
tionalities in ase package and provides a user-friendly interface by YAML.

The workflow of a GA-based global optimisation is

The steps are

1. Initial Population

• Generate an initial population of structures.

• Relax initial structures.

2. Iterate population until convergence.

• Selection: Choose the best-N structures to form a new population.

• Crossover: Use CutAndSplicePairing method to generate a new structure from two structures. This is
critical to the success of GA. See the schema below. (Phys. Rev. Lett. 2012, 108, 126101.)
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• Mutation: Each new structure (offspring) has a possibility to mutate that part of structures are modified.

• Minimisation: Relax new structures.

• Convergence: If the maximum number of generations (iterations) reaches.

3. Anaylse structures.

• Find structures with target properties in all explored structures.

Example

To use GA, the related commands are

# - explore configuration space defined by `config.yaml`
# results will be written to the `results` folder
# a log file will be written to `results/gdp.out` as well
$ gdp -d exp -p worker.yaml explore ./config.yaml

# - after GA is converged i.e. reaches the maximum generation,
# all found minima will be saved to `./resuslts/results/all_candidates.xyz`

The GA input file ./config.yaml contains several sections:

• method: This must be genetic_algorithm.

• builder:

Define the builder that generates random structures. This is used to generate an initial population of
structures. See RandomBuilders for more details. The example builder will put 4 Cu atoms on the
substrate stored in the file ./sub.xyz. Cu atoms are randomly created in a lattice region, details of
which can be found in Regions. More specific, Cu atoms will have arbitrary x- and y-coordiantes but
z-coordinate within the range [7,7+6].

In the params section,

• database: All explored structures are stored in this file with suffix .db.

• property: Target property to minimise. (Only energy for now.)

• convergence: Convergence criteria, e.g., the maximum number of generation.

• population: Define how to organise a popultion.

– init:
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Number of structures (size) in the initial generation. These structures will be created by the method
defined in the builder section.

– gen:

Number of structures in the following generation. size is the total number. random is the number
of structures generated by the initial builder while the rest is generated by the crossover operator.

– pmut:

The probability for each reproduced structure to mutate.

• operators:

– comparator:

Explored structures are compared with each other. The probability of a structure to be selected as
a parent is inverse of the number of its similiar structures.

– crossover:

This is the most critical operator in GA.

– mutation: List of mutation operators.

Each operator can be selected based on relative probabilities.

method: genetic_algorithm
builder:
method: random_surface
composition:
Cu: 4

region:
method: lattice
origin: [0., 0., 7.]
cell: [11.174, 0., 0., 0., 8.413, 0., 0., 0., 6.]

substrates: ./sub.xyz
covalent_ratio: [0.8, 2.0]
random_seed: 127

params:
database: mydb.db
population:
init:
size: 5

gen:
size: 5
random: 2

pmut: 0.8
operators:
comparator:
dE: 0.015
method: interatomic_distance

crossover:
method: cut_and_splice

mutation:
- method: rattle
prob: 1.0

- method: mirror
prob: 1.0

(continues on next page)
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property:
target: energy

convergence:
generation: 2

Application

1. Lee, M.-H.; Xu, J.; Xie, W. Exploring the Stability of Single-Atom Catalysts Using the Density Functional
Theory-Based Global Optimization Method: H2 Formation on VOx/-Al2O3(100). J. Phys. Chem. C 2022,
126, 6973-6981.

2. Xu, J.; Xie, W.; Han, Y.; Hu, P. Atomistic Insights into the Oxidation of Flat and Stepped Platinum Surfaces
Using Large-Scale Machine Learning Potential-Based Grand-Canonical Monte Carlo. ACS Catal. 2022, 12,
14812-14824.

3. Han, Y.; Xu, J.; Xie, W.; Wang, Z.; Hu, P. Comprehensive Study of Oxygen Vacancies on the Catalytic Perfor-
mance of Zno for CO/H(2) Activation Using Machine Learning-Accelerated First-Principles Simulations. ACS
Catal. 2023, 13, 5104-5113.

2.10 Tutorials

We have listed several tutorials to demonstrate how to build a potential for a very specific chemical system.

2.10.1 List of Tutorials

Build a Potential for Cu Bulk with Global Search

Here, we use EMT-GA to explore structures of Cu bulks.

Build a Potential for Pt/H2O with On-the-Fly Molecular Dynamics

Here, we use deepmd to explore structures of platinum-water interface.

2.11 Sessions

To make the structure exploration and the model training much more flexible, gdp organises several steps of a workflow
into a session, which is a graph flow that is made up of variables and operations. In general, variables are some simple
components that execute for little time while operations require a lot of time to get the final results. One can organise
a custom workflow using the combination of variables and operations through a simple YAML configuration file.

Each variable uses some parameters and sometimes other variables as inputs and creates a working component. Each
operation accepts variables, operations and custom parameters as inputs and forwards calculation results.
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2.11.1 Related Commands

# - run a session defined in the file `./config.yaml`
$ gdp session ./config.yaml

# - run a session defined in the file `./config.yaml`
# fill in the placeholders in config by `--feed`
$ gdp session ./config.yaml --feed temperatures=50,150,300

2.11.2 Minimal Configuration

Every session configuration needs three sections, namely, variables, operations, and sessions. In the configuration
below, one defines a workflow that runs molecular dynamics simulations of some structures.

For each variable, one must first set a type parameter. driver, potter (potential), and scheduler are simple variables
that can be defined by several parameters, which are similiar to the definition in Potentials. The computer variable
requires three variables as the input. One can ${vx:potter} to point to the required variable. vx means the input
is in the variables section and potter is just the variable name. At the first glance, this way of definition is a little
complicated than ones uses in gdp compute. However, if several different computer are required in one workflow,
driver and scheduler variables can be reusable.

The definition for operations is similar. One can further use ${op:read} to point to a defined operation. op means
the input is in the operations section and read is the operation name. Here, read operation reads structures from a
file, which is a wrapper of the ase.io.read function. Then scan operation takes the output of read (structures) to run
simulations defined in the computer variable.

sessions sets the entry point of the workflow. Here, scan is the name of the operation, and ALL results by variables and
operations will be saved the directory _scan. When starting this worfklow, gdp checks what inputs the scan operation
needs and executes those inputs, which forms a flow of operations as

**scan** <- **read**
<- **computer** <- **potter**

<- **driver**
<- **scheduler_loc**

variables:
computer:
type: computer
potter: ${vx:potter}
driver: ${vx:driver}
scheduler: ${vx:scheduler_loc}

potter:
type: potter
name: deepmd
params:
backend: lammps
command: lmp -in in.lammps 2>&1 > lmp.out
type_list: [H, O]
model:

- ./graph-0.pb
- ./graph-1.pb

driver:
type: driver

(continues on next page)
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task: md
init:
md_style: nvt
timestep: 0.5
temp: [150, 300, 600] # ${placeholders.temperatures}
dump_period: 50

run:
steps: 10000

scheduler_loc:
type: scheduler
backend: local

operations:
read:
type: read_stru
fname: ./candidates.xyz # ${placeholders.structure}

scan:
type: compute
builder: ${op:read}
worker: ${vx:_computer}
batchsize: 256

sessions:
_scan: scan

2.11.3 Variables

2.11.4 Operations

See operations.

2.12 Workflows

This section includes several oft-used sessions (workflows).

2.12.1 List of Workflows

Compute+Select

We can run basic computations with the operation compute. This operation accepts two input variables and one extra
parameter and forwards a List of Workers that have computation results (several MD/MIN trajectories).

Two input variables,

• builder: A node (variable or operation) that forwards structures.

• worker: Any computer variable.

One parameter,

• batchsize: How to allocate simulations into jobs.
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The computer variable is almost the same as what we define in worker.yaml shown in Computations. (Just change
potential to potter. . . )

Taking compute’s output, we can use the extract operation to get the trajectories and use the select operation to select
certain structures.

The workflow defined in the configuration below looks like

Sesscion Configuration

This configuration runs MD simulations, select some structures for DFT single-point calculations, and transfer them
to the dataset.

read , the read_stru operation reads structures from the file, which is basically a wrapper of the ase.io.read function.
The ./candidates.xyz contains five structures.

scan, the compute operation, accepts ${op:read} as input structures and runs simulations defined in
${vx:dpmd_computation}. In fact, builder can be any variable or operation that forwards structures, which, for in-
stance, are from builders in Section Builders or the extract/select by other explorations. Meanwhile, temp in the driver
variable is [150, 300, 600, 1200, 1500]. There will be FIVE workers that run MD simulations at different temperatures.

extract, the extract operation, reads the trajectories by scan and forwards an AtomsArray with a shape of (5, 5, 1000).
The dimensions are number of workers, number of input structures, the length of trajectory.

select_devi, the select operation, uses a property selector to select structures with max_devi_f in the range of [0.08,
0.64] eV/Ang (NOTE: The potential used should support uncertainty quantification.)

select_desc, the select operation, usese a descriptor selector to select structures using fps (Farthest-Point Sampling)
in the soap-based feature space. The selection is performed on the dimension (axis) 0, which means structures from
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different temperatures will be selected separately. Each group gets 64 structures and 320 (64*5) structures are selected
in total.

run_vasp, another compute operation, takes the output of select_desc and perform the single-point DFT calculations.

transfer, the transfer operation, transfers structures calculated by DFT to a file ./dataset/${SESSION_NAME}-
${COMPOSITION}-${SYSTEM}/${VERSION}.xyz. If the input structures from ./candidates.xyz all have a composition
of Cu16. The stored xyz-file should be ./dataset/md-Cu16-surf/dpmd.xyz

variables:
dataset:
type: dataset
name: xyz
dataset_path: ./dataset

# --- computers (workers)
dpmd_computation:
type: computer
potter: ${vx:dpmd}
driver: ${vx:nvtmd}
scheduler: ${vx:scheduler_gpu1_dpmd}

dpmd:
type: potter
name: deepmd
params:
backend: lammps
command: lmp -in in.lammps 2>&1 > lmp.out
type_list: ["Al", "Cu", "O"]
model:

- ./graph-0.pb
- ./graph-1.pb

nvtmd:
type: driver
task: md
init:
md_style: nvt
timestep: 2.0
temp: [150, 300, 600, 1200, 1500]
dump_period: 10
neighbor: "2.0 bin"
neigh_modify: "every 10 check yes"

run:
steps: 10000
constraint: "lowest 120"

scheduler_gpu1_dpmd:
type: scheduler
backend: slurm
ntasks: 1
cpus-per-task: 1
gres: gpu:1
mem-per-cpu: 8G
time: "0:30:00"
environs: "export OMP_NUM_THREADS=1\nexport KMP_WARNINGS=0\nconda activate deepmd\n"

vasp_computation:
type: computer

(continues on next page)
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potter: ${vx:vasp_gam}
driver: ${vx:driver_spc}
scheduler: ${vx:scheduler_cpu64_vasp}

vasp_gam:
type: potter
name: vasp
params:
backend: vasp
command: srun vasp_gam 2>&1 > vasp.out
incar: ./INCAR_LABEL_NoMAG
kpts: 25
pp_path: /home/apps/vasp/potpaw/recommend
vdw_path: /home/apps/vasp/potpaw

driver_spc:
type: driver
ignore_convergence: true

scheduler_cpu64_vasp:
type: scheduler
backend: slurm
ntasks: 64
cpus-per-task: 1
mem-per-cpu: 256M
time: "24:00:00"
environs: "export OMP_NUM_THREADS=1\nmodule purge\nmodule load intel/2021.1.2 intel-

→˓mpi/intel/2021.1.1\nconda activate deepmd\n"
# --- selectors
sift_desc:
type: selector
selection:
- method: descriptor
axis: 0
descriptor:
name: soap
species: ["Al", "Cu", "O"]
r_cut : 6.0
n_max : 12
l_max : 8
sigma : 0.2
average : inner
periodic : true

sparsify:
method: fps
min_distance: 0.1

number: [64, 1.0]
sift_devi:
type: selector
selection:
- method: property
properties:
max_devi_f:
range: [0.08, 0.64]
nbins: 20

(continues on next page)
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sparsify: filter
operations:
read:
type: read_stru
fname: ./candidates.xyz

scan:
type: compute
builder: ${op:read}
worker: ${vx:dpmd_computation}
batchsize: 256

extract:
type: extract
compute: ${op:scan}

select_devi:
type: select
structures: ${op:extract}
selector: ${vx:sift_devi}

select_soap:
type: select
structures: ${op:select_devi}
selector: ${vx:sift_desc}

run_vasp:
type: compute
builder: ${op:select_soap}
worker: ${vx:vasp_computation}
batchsize: 512

extract_dft:
type: extract
compute: ${op:run_vasp}

transfer:
type: transfer
structures: ${op:extract_dft}
dataset: ${vx:dataset}
version: dpmd
system: surf

sessions:
md: transfer

Warning: If the installed dscribe version is < 2.0.0, you need to change the parameters r_cut, n_max, and l_max
to rcut, nmax, and lmax.
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Run Massive NEB Calculations

We can run reaction calculations with the operation react and the variable reactor. In the workflow below, we use
Nudged Elastic Band (NEB) to calculate the reaction pathway between several structure pairs.

For a typical NEB calculation, it has the following steps:

1. Minimise the initial state (IS) and the final state (FS).

2. Align atoms in IS and FS and make sure the atom order is consistent.

3. Run NEB to converge the minimum energy path (MEP).

To run several NEB calculations at the same time, we need

1. Minimse all intermediates of interest (operations: read_stru to select_converged).

2. Run NEB calculations on selected structure pairs. (operations: pair -> react)

Node Definitions

The reactor variable is very similiar to computer that we use for minimisations and molecular dynamics. It requires
a potter and a driver as well. The potter can be any potential interfaced with gdp. Currently, the driver only suports
NEB.

The init section defines some parameters related to NEB.

• mic:

Whether use the minimum image convention. If used, the smallest displacement between the IS and the FS will
be found according to the periodic boundary.

• nimages:

Number of images that define the pathway. This includes the IS and the FS that are two fixed points.

• optimiser:

Algorithm to optimise the structures. mdmin is recommanded. Sometimes bfgs is more effective but less efficient
as it needs to update the Hessian matrix. Matrix diagonalisation for Hessian is very time-consuming, O(N^3),
where N is the matrix size, and it takes much more time to solve the Hessian than evaluate the forces for a large
structure or a large number of images.

The run section is the same as the one in computer. fmax is the force convergence tolerance and steps is the maxi-
mum optimisation steps. Sometimes one would like NOT to minimise the IS and the FS that are pre-minimised by
DFT, provided that the MLIP is not good enough. steps can be set to -1 that means a single-point calculation will be
performed.

reactor:
type: reactor
potter: ${vx:dpmd}
driver:
backend: ase
init:
optimiser: mdmin
mic: true
nimages: 11

run:
fmax: 0.05

(continues on next page)
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steps: 50
constraint: "lowest 16"

The locate variable is used to get the last frame of the minimisation. If there are 3 intermediates minimised with 50
steps, the input for the selection is an AtomsArray with a shape of (3, 50). The axis defines on what dimension the
selection is performed. The indices defines the indices to select on the selected dimension. In the example below, the
selection is performed on the second dimension (axis: 1, the shape 50) and the last structure is selected (indices: -1).

locator:
type: selector
selection:
- method: locate
axis: 1
indices: "-1"

The pair operation constructs the structure pairs for NEB. Here, the custom method is used. If the input structures has
3 structures, it will prepare two pairs, one between the first and the second structure, and another is between the second
and the third structure. Therefore, two pathways will be calculated by NEB later.

pair:
type: pair_stru
structures: ${op:select_converged}
method: custom
pairs: # NOTE: index starts from 0!!!
- [0, 1]
- [1, 2]

Session Configuration

variables:
reactor:
type: reactor
potter: ${vx:dpmd}
driver:
backend: ase
init:
optimiser: mdmin
mic: true
nimages: 11

run:
fmax: 0.05
steps: 50
constraint: "lowest 16"

dpmd_min:
type: computer
potter: ${vx:dpmd}
driver:
task: min
run:
fmax: 0.05 # eV/Ang
steps: -1 # steps: 400

(continues on next page)
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constraint: "lowest 16"
dpmd:
type: potter
name: deepmd
params:
backend: ase
type_list: ["Al", "Cu", "O"]
model:
- ./graph.pb

scheduler_loc:
type: scheduler

locator:
type: selector
selection:
- method: locate
axis: 1
indices: "-1"

operations:
read_stru:
type: read_stru
fname: ./intermediates.xyz

run_dpmin:
type: compute
builder: ${op:read_stru}
worker: ${vx:dpmd_min}
batchsize: 512

extract_min:
type: extract
compute: ${op:run_dpmin}

select_converged:
type: select
structures: ${op:extract_min}
selector: ${vx:locator}

pair:
type: pair_stru
structures: ${op:select_converged}
method: custom
pairs: # NOTE: index starts from 0!!!
- [0, 1]
- [1, 2]

react:
type: react
structures: ${op:pair}
reactor: ${vx:reactor}

sessions:
_rxn: react
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Explore with GA

We can access the expeditions introduced in by explore operation. This operation accepts two input variables and
forwards a List of Workers (several MD/MIN trajectories). Taking its output, we can further use selectors to select
structures of interest and use validators to check if the potential gave us satisfactory results,

For the input variables,

• expedition: A variable with all expedition-related parameters.

• scheduler: Where to run the expedition.

The workflow defined in the configuration below looks like

Session Confiugration

The definition of GA is similar to what we have in the Genetic Algorithm (GA). The difference is that we use
{vx:builder} and {vx:computer} in the variables section. The worker is the minimisation the same as the one we
defined in worker.yaml that is no longer needed here.

After the exploration finishes, the select operation selects some structures from the output minimisation trajectories. In
the configuration below, there are 20 trajectories in total, which is 5 structures in each generation times 4 generations
(the initial generation plus 3 generations). Also, the extract operation sets merge_worker to true and thus forwards an
AtomsArray with the shape of (20, ?), otherwise it is (4, 5, ?). The ? is the largest length of the minimisation trajectory.
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locate selectors require two parameters:

• axis: The axis of the AtomsArray.

• indices: A string similar to python slice.

select_minima uses a locate_minima selector to first select the last structures of each trajectory and then takes 8 struc-
tures with the lowest total energies.

select_mintraj uses a locate_mintraj selector to select the structures of each trajectory with a step of 10. If a trajectory
has 27 structures, the structure at 0, 10, 20 steps will be selected.

With selected structures, one can further add the compute operation that label them with DFT or validate operation that
analyses them.

The seqrun operation serves as an entry point of the worflow. It takes a list of nodes and will execute them sequentially.

variables:
# --- Define the system to explore
builder:
type: builder
method: random_surface
composition:
Cu: 19

region:
method: lattice
origin: [0., 0., 7.]
cell: [16.761, 0., 0., 0., 16.826, 0., 0., 0., 6.]

substrates: ./surface.xyz
# covalent_ratio: [0.8, 2.0]
# test_too_far: false
random_seed: 127 # Change this!

# Otherwise, it will generate the same initial structures.
# --- Define a potential to use
computer:
type: computer
potter: ${vx:potter}
driver: ${vx:driver_min}
scheduler: ${vx:scheduler_loc}

potter:
type: potter
name: deepmd
params:
backend: lammps
command: lmp -in in.lammps 2>&1 > lmp.out
type_list: ["Al", "Cu", "O"]
model:
- ./graph-0.pb
- ./graph-1.pb

driver_min:
type: driver
task: min
backend: lammps
ignore_convergence: true # Allow unconvgerd trajectory
run:
fmax: 0.05 # 0.1

(continues on next page)
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steps: 400
constraint: "lowest 120"

scheduler_loc:
type: scheduler

# --- Define the expedition (exploration)...
ga:
type: genetic_algorithm
builder: ${vx:builder}
worker: ${vx:computer}
params:
database: mydb.db # ase convert ./mydb.db mydb.xyz
property:
target: energy

convergence:
generation: 3

population:
init:
size: 5

gen:
size: 5 # = init.size
random: 1

pmut: 0.8 # prob of mutation
operators: # here, define a bunch of operators
comparator:
method: interatomic_distance
dE: 0.015

crossover: # reproduce
method: cut_and_splice

mutation:
- method: rattle
prob: 1.0

- method: mirror
prob: 1.0

# --- Define some selectors...
locate_minima:
type: selector
selection:
- method: locate
axis: 1
indices: "-1"

- method: property
properties:
energy:
sparsify: sort

number: [8, 1.0]
locate_mintraj:
type: selector
selection:
- method: locate
axis: 1
indices: ":-1:10"

operations:
(continues on next page)
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# --- run exploration
explore: # -> a List of workers
type: explore # forward a list of workers
expedition: ${vx:ga}
scheduler: ${vx:scheduler_loc}

# --- get minima
extract: # -> trajectories with a shape of (20, ?)
type: extract
compute: ${op:explore}
merge_workers: true

select_minima: # -> minima
type: select
structures: ${op:extract}
selector: ${vx:locate_minima}

# --- get mintraj
extract_mintraj: # -> trajectories with a shape of (20, ?)
type: extract
compute: ${op:explore}
merge_workers: true

select_mintraj: # -> minima
type: select
structures: ${op:extract_mintraj}
selector: ${vx:locate_mintraj}

seqrun:
type: seqrun
nodes:
- ${op:select_minima}
- ${op:select_mintraj}

sessions:
_ga: seqrun

Note: Since initial structures are randomly created, they may have very small atomic distances. The minimisation may
not converged even after hundreds of steps. Set ignore_convergence in the driver to allow the unconverged trajectory.
The LAST structure in the trajectory will be accepted by GA to reproduce structures in the following generations.

Train

We can access the training by a train operation. This operation accepst four input variables and forwards a potter
(AbstractPotentialManager) object.

For the input variables,

• potter:

The potential manager. See Potentials for more details.

• dataset:

The dataset. See Trainers for more details.

• trainer:

The trainer configuration that defines the commands and the model configuration.
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• scheduler:

Any scheduler. In general, the training needs a GPU-scheduler.

Note: The name in potter and trainer should be the same.

Extra parameters,

• size:

Number of models trained at the same time. This is useful when a committee needs later for uncer-
tainty estimation.

• init_models:

A List of model checkpoints to initialise model parameters. The number should be the same as size.

Session Configuration

variables:
dataset:
type: dataset
name: xyz
dataset_path: ./dataset
train_ratio: 0.9
batchsize: 16
# random_seed: 1112 # Set this if one wants to reproduce results

potter:
type: potter
name: deepmd
params:
backend: lammps
command: "lmp -in in.lammps 2>&1 > lmp.out"
type_list: ["H", "O"]

trainer:
type: trainer
name: deepmd
command: dp
config: ${json:./config.json}
train_epochs: 500
# random_seed: 1112 # Set this if one wants to reproduce results

scheduler_gpu:
type: scheduler
backend: slurm
partition: k2-gpu
time: "6:00:00"
ntasks: 1
cpus-per-task: 4
mem-per-cpu: 4G
gres: gpu:1
environs: "conda activate deepmd\n"

operations:
train:

(continues on next page)
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type: train
potter: ${vx:potter}
dataset: ${vx:dataset}
trainer: ${vx:trainer}
scheduler: ${vx:scheduler_gpu}
size: 4
init_models:
- ./model.ckpt

sessions:
_train: train

Validate

**Validate* operations requires validator, structures (dataset), and worker (optional) as inputs.

variables:
...

operations:
...

sessions:
...

Add Correction to Computed Structures

Use gdp session to run a worflow add energy/forces correction to computed structures. The correct operation needs
two input variables and forwards a Tempdata variable (See Dataset section for more details).

For the input variables,

• structures: A Tempdata variable.

• computer: A computer variable.

The example below adds DFT-D3 correction to a dataset of a H2O molecule. The output cache is saved
./_corr/0002.corr_dftd3/merged.xyz. The structures have energy/forces equal origin+dftd3.

Example Configuration

variables:
dataset:
type: tempdata
system_dirs:
- ./min-H2O-molecule

# ---
spc_dftd3:
type: computer
potter:
name: dftd3
params:
backend: ase

(continues on next page)
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method: PBE # xc
damping: d3bj

operations:
corr_dftd3:
type: correct
structures: ${vx:dataset}
computer: ${vx:spc_dftd3}

sessions:
_corr: corr_dftd3

Note: DFT-D3 computation requires python packge dftd3-python. Use conda install dftd3-python -c conda-forge if
one does not have it.

2.13 Extensions

This section is about how to extend GDPy with custom python files.

2.13.1 Custom Potential

First we define a class named EmtManager that is a subclass of AbstractPotentialManager in emt.py.
We need to implement two attributes (implemented_backends and valid_combinations) and one method
(register_calculator). Here, we only implement one backend that uses built-in EMT calculator in ase.

#!/usr/bin/env python3
# -*- coding: utf-8 -*

from ase.calculators.emt import EMT

from GDPy.potential.manager import AbstractPotentialManager

class EmtManager(AbstractPotentialManager):

name = "emt"
implemented_backends = ["ase"]

valid_combinations = [
["ase", "ase"]

]

def register_calculator(self, calc_params, *args, **kwargs):
super().register_calculator(calc_params)

if self.calc_backend == "ase":
calc = EMT()

self.calc = calc

(continues on next page)
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return

if __name__ == "__main__":
pass

Then we can use EMT through pot.yaml.

potential:
name: ./emt.py # lowercase
params:

backend: ase
driver:

backend: external
task: min
run:

fmax: 0.05
steps: 10

At last, we optimise a H2O molecule with EMT. The results are stored in the directory cand0.

$ gdp driver ./pot.yaml -s H2O
nframes: 1
potter: emt
*** run-driver time: 0.1517 ***
[1.8792752663147125]

2.14 Applications

1. Lee, M.-H.; Xu, J.; Xie, W. Exploring the Stability of Single-Atom Catalysts Using the Density Functional
Theory-Based Global Optimization Method: H2 Formation on VOx/-Al2O3(100). J. Phys. Chem. C 2022,
126, 6973-6981.

2. Xu, J.; Xie, W.; Han, Y.; Hu, P. Atomistic Insights into the Oxidation of Flat and Stepped Platinum Surfaces
Using Large-Scale Machine Learning Potential-Based Grand-Canonical Monte Carlo. ACS Catal. 2022, 12,
14812-14824.

3. Han, Y.; Xu, J.; Xie, W.; Wang, Z.; Hu, P. Comprehensive Study of Oxygen Vacancies on the Catalytic Perfor-
mance of Zno for CO/H(2) Activation Using Machine Learning-Accelerated First-Principles Simulations. ACS
Catal. 2023, 13, 5104-5113.
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